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Electron transport models with diffusion gradient and 
electric field, using the maximum anisotropic 
approximation 
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Abstract. The maximum anisotropic approximation for electron transport in an electric field 
is extended to the position-dependent case. Models utilising non-polar optical, acoustic and 
piezoelectric phonon scattering processes are constructed. The piezoelectric model produces 
the Euler-Darboux equation in the position-dependent case and an analytical solution is 
given. Analytical solutions are given for each of the models in the position-independent case. 

1. Introduction 

In electron transport problems in the presence of a DC electrical field it is often a good 
approximation to assume a nearly isotropic form for the probability distribution function 
in momentum or energy space-the so-called nearly isotropic approximation (NIA) 
[l, 2,4].  In this approximation the field modifies the distribution function by a small 
anisotropic term, dependent on the energy and the angle, 8, between the electron 
momentum vector and the field direction. Essentially, this approximation is the first- 
order truncation of the Legendre expansion of the distribution function in the angle 8, 
about the direction of the field. If f o ,  f l  denote the isotropic and anisotropic terms in 
the NIA,  then substitution in the Boltzmann transport equation (BTE) and use of the 
orthogonality properties of the Legendre polynomials results in two coupled equations 
forfo,fl. Under certain further assumptionsf, may be eliminated and a single equation 
obtained forf,. Much use of this method has been made in electron transport problems, 
particularly in the position-independent case, in which the equation forfo reduces to a 
second-order ordinary differential equation in energy space which is often analytically 
solvable [2]. In the case of inhomogeneous transport, in which the distribution function 
is spatially dependent and spatial boundary conditions are relevant, the equation for f o  
becomes a second-order partial differential equation in position and energy variables, 
which again may be analytically solvable in certain circumstances [l, 3-51. 

Many years ago Baraff [6] drew attention to an approximation at the other extreme 
to the NIA, i.e. when the distribution function is ‘maximally’ distorted due to a pre- 
ponderance of electrons streaming in the field direction. Baraff argued for an alternative 
form of truncation of the Legendre expansion in this case which he called the ‘maximum 
anisotropy approximation’ (MAA). This method essentially uses an extremely spiked 
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dependence of the distribution function on the angular variable 8 to truncate the 
Legendre expansion in a maximally anisotropic manner. Applied to second order in the 
Legendre series it again produces coupled equations forfo andfl, as in the N I A  case, but 
of course the equations are different. Baraff applied the method to spatially-independent 
electron transport in a strong uniform electric field in a semiconductor with optical- 
phonon-dominated scattering in the presence of ionisation processes. The resulting 
equations for his equivalents to f o  and f l  are a coupled system of first-order ordinary 
differential equations in energy space, which he solved by a number of approximations. 
The method has also been applied to other problems [7] .  

In this paper we generalise Baraff's treatment to the spatially-dependent case, 
analogous to that considered for the N I A  in [l, 3,4,5] ,  and also extend the analysis to 
other scattering processes. The coupled equations forfo andf, are now complicated first- 
order partial differential equations in position and energy space. We examine to what 
extent the elimination offl from these equations produces a tractable equation forfo for 
different scattering processes. Without some approximations in the physical parameters 
such as scattering rates and electric field, the resulting equations are not tractable 
analytically for the cases of non-polar optical scattering or acoustic phonon scattering. 
However, the piezoelectric case is interesting in that it may be reduced to the well known 
Euler-Darboux equation [8, 91, for which a formal analytic solution may be obtained. 
However, applying the physical boundary conditions may present some difficulties. We 
also look at the position-independent models (analogous to that of Baraff) for acoustic 
and piezoelectric scattering and find that solutions are possible in both cases, just as in 
the ionisation-free optical phonon case. It is not our intention to examine the detailed 
physical properties of these models and solutions here, but only to study the extent to 
which tractable analytical solutions exist for the various models. 

2. The maximum anisotropy approximation 

For the case of one-dimensional electron transport in a semiconductor, in the presence 
of a uniform field, f, and a concentration gradient along the x axis, the probability 
distribution functionf(x, k ,  t )  in the quasiclassical effective mass approximation, in the 
steady state, satisfies the BTE 

(%/M,X >(WW + ( e f / W a f / W  = C ( f ) .  (2 .1 )  
Here k, = k cos 8 is the component of the wave vector in the field direction, with which 
it makes an angle 8. M,X is the effective mass and C ( f )  is the collision integral. 

Assuming, as is usual, that the only form of anisotropy in wave vector space is the 
electric field, we can expand f i n  a Legendre series about the direction of the field, i.e. 
in the form 

I 

f(x, k , )  e f ( x ,  k ,  8 )  = ICf/(x, E)Pi(cos 8 )  (2 .2 )  
l = O  

where E ,  the energy, is given by E = h2k2/2M,X. Note that the expansion coefficients in 
( 2 . 2 ) ,  fi(x, E ) ,  are not quite the same as those used in the usual approach to the N I A  
[2,4]. There it is usual to assume an expansion of the form 

f ( x ,  k , )  = f d x ,  E )  + k f ,  (x, E)P* (cos 8 )  
with the factor k in the second term. This form of the expansion, while convenient for 
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the NIA does not generalise easily to the full Legendre approximation, so here we retain 
the form (2.2). Thus, thefl  we use in this paper is k times thef, used in [4]. Thef,  used 
in [ l ]  on the other hand is equivalent to that used here. 

Analogous to (2.2), the collision integral in (2.1) may be expanded in the form 

where the Cl(x, E )  are in fact functions of thefiand, on the usual assumption of virtually 
isotropic scattering, only CO and C, make significant contributions. 

To facilitate the substitution of the Legendre expansion in (2.1) we introduce k-space 
polar coordinates in the form 

E = Zi2k2/2M,* = (h2/2M,*)(k: + k$ + k:) 

p = COS 8 = k,/k. 

In terms of these coordinates, the BTE operator in (2.1) becomes 

Substituting (2.2) into the right hand side of (2.5) and using the well known identities: 

P P n ( P )  = + l>l[(n + 1)Pn+l(P) + nPn-l(Pl1 (2.6) 

(1 - P 2 >  aPn(P) /aP = [n(n + 1)/(2n + 1>1(Pn-1 - P,+l) (2 .7)  

( I / V / ~ M ) [ + E D ~ ,  + (2ec/3)fl] = cO 
(1/V/2M,*)(2EDf0 + $EDf2  + aecf2) = C1 

we obtain, on equating the coefficients of P , ( p )  with (2.3): 

(2.8) 
(1 /V/2M)[$EDf1 + $EDf, + Y ecf3 - (2ec/3)fl] = C2 

etc, where D 
Apart from notation, these are the equations given by Baraff. Formally, one obtains 

the collision integral coefficients, C,, by substituting the Legendre expansion in the 
collision integral 

a/dx + ec(a/dE).  

-V 
C(f) = (2..>3 J [P@> k’)f(k) - P ( k ’ ,  k)f(k’)l dk’  (2.9) 

choosing the transition probability P(kk‘) appropriate to the collision process of interest 
and making various plausible approximations to produce expressions for the C, of 
practical use. In his original paper Baraff adopted a direct physical approach to deduce 
the CO and C1 which he required ( S O  and S1 in his notation) for his model of optical 
phonon scattering and ionisation processes. Here we will be more general and consider 
forms of CO and C ,  appropriate to some standard models for a wide range of scattering 
processes [2]-essentially those for which a relaxation approximation for f 1  is permiss- 
ible. First, however, we describe Baraff‘s truncation procedure for the maximum aniso- 
tropic approximation. 

In the NIA, the set of equations (2.8) is truncated after the first two terms in the 
Legendre series, leaving only the first two coupled equations for f0 and f l  with f 2  put 
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equal to zero. Then if one can assume a relaxation form for C,, taking it proportional 
(up to an energy dependent factor) tof,, we can eliminatefl from the first two equations 
and obtain a single equation forfo. In the MAA, on the other hand, it is assumed thatfis 
so highly peaked in the field direction that it may be assumed to have the form 

f(x, E ,  P )  = g(x, W ( 1  - ,PI .  (2.10) 

Then the Legendre coefficients will have the form 

fn(x, E )  = - 2n + ill g(x, E)6(1 - Y)Pfl(Y) dY = [(2n + W I g ( x ,  E)P,(1)  2 

from which we deduce, since Pfl(l) = 1 for all n ,  that 
fn(x, E )  = + 1>/(2n - l>lfn- l (x ,  E) .  (2.11) 

f d x ,  E )  = [(2N + 1)/(2N - 1)lf*j- 1 (x, E )  (2.12) 
We now truncate the Legendre series at the Nth term by assuming 

which is the basis for the MAA. For its general region of validity and its consistency with 
the NIA in the isotropic limit see [6]. 

Applying the above truncation to the case of N = 2, i.e. dropping the equations for 
f 2  and higher-order coefficients, the scheme (2.8) produces the following equations for 
f o  andf, on use of (2.12) 

(2.13) 

(2.14) 
and it is these coupled equations which we have to solve forf, andf,. For this we need 
the expressions for the collision integral coefficients CO and C1, which of course depend 
on the scattering process under consideration. The forms used for CO and C, are notori- 
ously subject to approximations and assumptions which may be questionable in such 
extreme cases as high field and the presence of carrier streaming. However, we will here 
adopt the pragmatic attitude that the field does not affect the scattering mechanism and 
will consider the standard models of randomising or elastic collisions for first order in 
phonon energy. The standard reference here is [2] ,  to which the reader is referred for 
further discussion of the results which we use. As noted earlier, thef, used in the present 
paper is k times that used in [2] and bearing this in mind we quote the results for CO and 
C, for the different scattering mechanisms, to first order in phonon energy. 

In each of the cases of non-polar optical, acoustic and piezoelectric phonon scattering 
we can obtain a relaxation approximation for C1 

( I / v ' /~M,*($ED~,  + (2e[/3)fl) = c0 
( ~ / V ' / M ) ( E D ~ ,  + j ~ ~ f ,  + e<fl)  = c1 

Cl = -f,(E)/z1(E) 
where the relaxation time tl takes the form given below, along with the CO expressions 
to first order in phonon energy. 

Z, = topmE-1/2 (2.15) 

CO = (1/tope)E-1'2(fo + E(afo /aE))  = ( l / tope)E-l /*(a(Ef , ) /aE) .  (2.16) 

Non-polar optical phonon scattering: 

Acoustic phonon scattering: 
E-lP X I  = T a m  (2.17) 

CO = (l/tace)E1'2(2f0 + E(d f&E) )  = (l/tace)E-l'* a(E2fo)/aE. (2.18) 
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Piezoelectric phonon scattering: 

z1  = z ~ ~ ~ E ~ / ~  (2.19) 

CO = ( ~ / T ~ ~ , ) E - ~ ' * ( ~ O  + E dfo/aE) = (1/tpze)E-1/2 d(Efo)/dE. (2.20) 

The top,, t,,,, and tpzm are the respective C1 relaxation time constantsfor non-polar 
optical phonon, acoustic and piezoelectric phonon scattering. tope, t,,,, and tpze denote 
the corresponding time constants associated with the symmetric collision term CO [2] .  

We now examine the maximum anisotropy approximation equations for each of 
these scattering processes. 

3. Non-polar optical phonon scattering 

In the x-independent case this is essentially the situation modelled by Baraff [6] .  Using 
(2.15) and (2.16) in (2.13) and (2.14) gives 

where 

a0 = ~ / z o p e  P o  = Z v p m / W  A = e t .  (3.3) 
We may now eliminte f l  from these two equations by subtracting (3.1) from (3.2) to 
eliminate D f l ,  leaving an expression for f l ,  in terms of f o  and Dfo,  which may then be 
substituted back into (3.1).  The rather involved calculations result in the following 
equation 

E(E/PO + A / 3 ) [ d 2 ~ / d x 2  + (2A + ao)  d2v/dx aE + ( A 2  + Aao) a 2 W / a E 2 ]  

+ [(3aO/2Pi)E2 - (A/p,)(A - ao)E + aoA2/2]dT)/dE 

- ( A / P , ) E ( W / a x )  + ( A 2 / P O > W  = 0 (3.4) 
where T) = EfO. This is a hyperbolic second-order partial differential equation for W .  
The roots of its auxiliary equation are -A and -(A + azo), so it may be converted to 
canonical form by choosing coordinates 

E = E - A x  11 = E - ( A  + a o ) ~ .  

However, neither (3.4) or its canonical form lend themselves to a practicable ana- 
lytical approach, so we will move on to the case of position-independent transport. In 
this case, dropping the spatial derivatives in (3.1) and (3.2) gives 

On eliminating f l  from (3.5) and (3.6) we obtain, of course, the position-independent 
form of (3.4): 

A(A + aO)E(E/Po + A/3) d2W/dE2 + {(2ao/2Pi)E2 

- [A(A - ao)/Po]E + aoA2/2}dT)/dE + ( A 2 / B o ) W  = 0. (3.7) 
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It is interesting to compare (3.5) and (3.6) with the corresponding equations of Baraff 
[6]. Putting ml  = Ef, and mo = Efo = q, (3.5) and (3.6) become 

d m l / d E  = (3ao/2il) dmo/dE  (3.8) 

(2Apo/3) dm, /dE  + (1 + AP0/3E)ml + p o A  dmO/dE - (APo/E)mo = 0. (3.9) 

These are to be compared with Baraff's equations 

(Q/3) d m , / d E  + rmo - (1 - r)ER dmo/dE  = 0 (3.10) 

(2Q/3) d m l / d E  + (1 + Q/3E)ml + Q dmo/dE  - (Q/E)mo = 0 (3.11) 

which include an ionisation process ( r  # 0) in addition to an optical phonon scattering 
model. Removing the ionisation by setting r = 0 allows direct comparison with (3.8) and 
(3.9) from which we obtain the connection between Baraff's parameters and our own: 

Q = APo E R  = cuOpO/2 (3.12) 

(Baraff has fewer parameters because he assumed the same relaxation times for both CO 
and C1, whereas we have not assumed rOpm = tope). 

As did Baraff in the r = 0 case, we can solve (3.8) and (3.9) analytically. Thus (3.8) 
integrates directly to 

(3.13) mo = (2A/3ao)ml + A 

with A an arbitrary constant. Then substitution into (3.9) gives 

d m , / d E  + ( b  + a/E)m, = c/E (3.14) 

where 

a = (a0 - 2A)/2(a0 + A )  

(3.14) has the general solution 

b = 3a0/2Apo(&o + A )  c = 3aoA/2(ao + A). 
(3.15) 

+ ml(Ej)(E/E,)- '  eb(€!-€) (3.16) 

which is Raraff's equation, where Ei is some threshold energy below which no ionisation 
occurs. mo then follows from (3.13). We will not pursue further the physical implications 
of (3.16), which have been thoroughly discussed by Baraff. 

4. Acoustic phonon scattering 

Substituting (2.17) and (2.18) into (2.13) and (2.14) gives 

$EDfl + (2A/3)fI = aa d(E2fo)/dE 

EDfo + fEDf1 + AfI = -Ef~/pa 

a, = -/race 

(4.1) 

( 4 4  
where 

p a  = 2 t a c m / W .  
Apart from the different form for CO, these are identical to the polar optical case and 
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similar, even more involved, calculations eliminatingf, result in the following equation 
for = Ef, 
E(E/Pa + A/3)[a2W/dx2 + (2A + a a E )  d2W/ax dE + A(h + a,E)  d2W/aE2]  

+ [(3aa/2P:)E3 + (3A(ua/Pa)E2 + A2(7aa/6 - l/P,)E] dW/ax 

+ ( a a / P a ) E 2  + A(aa/3 - 1/Pa>EI d ~ / a x  
+ [ (3aa/2P;)~’  + ( A a a / P a ) E  + A 2 ( 1 / P a  + a a / 2 ) I ~  = 0. (4.3) 

Again, this is a hyperbolic partial differential equation. The roots of its auxiliary equation 
are -A and -(A + cyaE), so it may be converted to canonical form by the choice of 
coordinates 

t = E - A x  7 = ln(A+ a,E)  - cy,x. 
While the general form (4.3) offers no simple solution, the position-independent 

case is more tractable. The equations (4.1) and (4.2) may be rewritten as 

$Adm,/dE = cy, d(Emo)/dE (4.4) 
A dmo/dE  + (2A/3) d m l / d E  - (A/E)m, + (A/3E + l/P,)ml = 0 (4.5) 
with mo = = Efo and m,  = Ef,. From (4.4) we have 

ml  = (3aa/2A)Emo + A  ( A  = constant) 
which, substituting into (4.5) gives 
dmo/dE  + [ (3aaE2 + 3AaaP,E - 2A2Pa)/2APaE(A + aaE)]mo 

= -A(AP, + 3E)/3PaE(A + aaE). 
This linear first-order equation may be solved to give 

i mo(o) 
E exp(-3E/2APa) 

mo(E) = (*,E + A)(5@,P,-3)/2n,Pa A(3-5@,Pa)/’@,0, 

- $JOE X 2 ( L y , X  + A ) 3 ( 1 - a d P 8 ) / 2 @ d @ a  1 (4.6) 
(Ab, + 3x) exp[3x/2APa] dx 

where mo(0) and A may be determined from the physical boundary conditions. (4.6) 
provides us with a model for homogeneous acoustic phonon scattering analogous to that 
provided by Baraff for optical phonon scattering. 

5. Piezoelectric scattering 

In this case the coupled equations forfo andf, become 

f E D f ,  + (2A/3)fi = ap a(Efo)/dE 
EDfo + S D f i  + Afzfl = -fl /Pp 

where 
a p  = W / z p z e  pp = 2 T p z m / W .  (5.3) 

The calculations to eliminatef, are less strenous in this case and yield the equation 
E[d2V/ax2 + (2A + cyp) d2q/dx aE + A(A + a p )  d23/dE2]  

+ (3aP/2)(A + l /Pp) dW/dE = 0 
with 

W = EF”. 
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Again, this is a hyperbolic equation which can be converted to canonical form by 
choosing coordinates 

E = E - A x  7 = E - ( A  + CU,)X.  (5 .6)  

The result is 

a2v/aE ar + {A/[Arl - (a ,  + Wl>(av/aE + w/ar) = 0 (5.7) 

whereA = (3at/2pp)(ppA + 1)/(2A + Finally, substitute 

U = (ap + A)E U = AV ( 5 . 8 )  

a2w/au a u  - [a/(. - U ) ]  a q / a u  - [ P / ( U  - U ) ]  a ? / / a u  = 0 

into (5.7) to obtain the equation 

(5.9) 

where a = a / A  2 0 and /3 = a / ( A  + ap) 2 0. (5.9) is a form of the Euler-Darboux 
equation [8,9]. It may be shown that (5.9) has a general solution of the form 

v = j" q ( E > ( u  - E ) " E  - U > - "  d'E 
U 

(5.10) 

where q( E )  and B( E )  are arbitrary functions. 
Substituting 

5 = tu + ( 1  - t )u  = ( U  - u)t + U Ostal 

the general solution (5.10) takes the form 

q) = ( U  - , )1+P-.  jo' q ( ( u  - u)t  + u ) t P ( l  - t)-" d t  

+lo1 B ( ( ~ - u ) t + u ) t ~ - l ( l - t t ) - ( ~ + P ) d t  

whence substituting back from (5.6) finally yields the solution of (5.4) in the form 

~ ( x ,  E )  = ( C Y ~ E ) ~ + P - @  q(a ,Et  + AE - A(A + a,)x)tP(l - t)-" d t  

B(a,Et + AE - A ( A  + a p ) x ) t " + l ( l  - t ) - ( '+P)  dt. 
+ I,' (5.11) 

While such general analytical solutions are a luxury in models of this sort, enthusiasm 
for it is tempered by the obvious difficulty of determining the functions q and 0 appro- 
priate to realistic boundary conditions. This may involve us in the solution of complicated 
integral equations, but at least the results will allow a closed form analytic solution. 
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The position-independent case for piezoelectric scattering is much simpler. (5.4) 
reduces to 

A(A + ap) d 2 y / d E 2  + (apa/E)  d y / d E  = 0 

which is easily integrated to 

AE ' -b / ( l  - b)  + B i f b f l  

A l n E + B  ifb = 1 

(5.12) 

(5.13) 

where A and B are constants and b = q ,a /A(A  + ap). 

(5.13) gives a simple model for piezoelectric scattering in the position-independent case 
under conditions of streaming under a strong electric field. It generalises Baraff's analysis 
to piezoelectric scattering. 

6. Conclusions 

We have investigated the types of mathematical models of transport in an electric field 
with various types of scattering, using the maximum anisotropic approximation of 
Baraff. In the position-dependent case the non-polar optical and acoustic cases do not 
appear to be amenable to practicable analytical treatments, but the piezoelectric case 
reduces to the well known Euler-Darbouxequation, of which it is an interesting example. 
An analytic solution for the piezoelectric case is given, although the application to real 
physical situations may be restricted by the difficulties of fitting the boundary conditions. 

In the spatially-independent case, analytical solutions for all models are given and 
the application to physical situations should follow essentially the treatment of the non- 
polar optical case given by Baraff [6]. 

Such analytical models considered here are useful as first approximations in the 
modelling of specific devices or processes and also as test cases for the development of 
computer codes. 
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